Create Diff.php
This commit is contained in:
parent
c4ec8270b9
commit
9c2c959275
580
GetFirmwareUpdates/htmldiff/Diff.php
Normal file
580
GetFirmwareUpdates/htmldiff/Diff.php
Normal file
@ -0,0 +1,580 @@
|
||||
<?php
|
||||
/* Copyright (C) 2008 Guy Van den Broeck <guy@guyvdb.eu>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||||
* or see http://www.gnu.org/
|
||||
*/
|
||||
|
||||
/**
|
||||
* This diff implementation is mainly lifted from the LCS algorithm of the Eclipse project which
|
||||
* in turn is based on Myers' "An O(ND) difference algorithm and its variations"
|
||||
* (http://citeseer.ist.psu.edu/myers86ond.html) with range compression (see Wu et al.'s
|
||||
* "An O(NP) Sequence Comparison Algorithm").
|
||||
*
|
||||
* This implementation supports an upper bound on the excution time.
|
||||
*
|
||||
* Complexity: O((M + N)D) worst case time, O(M + N + D^2) expected time, O(M + N) space
|
||||
*
|
||||
* @author Guy Van den Broeck
|
||||
* @ingroup DifferenceEngine
|
||||
*/
|
||||
class WikiDiff3 {
|
||||
|
||||
//Input variables
|
||||
private $from;
|
||||
private $to;
|
||||
private $m;
|
||||
private $n;
|
||||
|
||||
private $tooLong;
|
||||
private $powLimit;
|
||||
|
||||
//State variables
|
||||
private $maxDifferences;
|
||||
private $lcsLengthCorrectedForHeuristic = false;
|
||||
|
||||
//Output variables
|
||||
public $length;
|
||||
public $removed;
|
||||
public $added;
|
||||
public $heuristicUsed;
|
||||
|
||||
function __construct($tooLong = 2000000, $powLimit = 1.45){
|
||||
$this->tooLong = $tooLong;
|
||||
$this->powLimit = $powLimit;
|
||||
}
|
||||
|
||||
public function diff(/*array*/ $from, /*array*/ $to){
|
||||
//remember initial lengths
|
||||
$m = sizeof($from);
|
||||
$n = count($to);
|
||||
|
||||
$this->heuristicUsed = false;
|
||||
|
||||
//output
|
||||
$removed = $m > 0 ? array_fill(0, $m, true) : array();
|
||||
$added = $n > 0 ? array_fill(0, $n, true) : array();
|
||||
|
||||
//reduce the complexity for the next step (intentionally done twice)
|
||||
//remove common tokens at the start
|
||||
$i = 0;
|
||||
while($i < $m && $i < $n && $from[$i] === $to[$i]) {
|
||||
$removed[$i] = $added[$i] = false;
|
||||
unset($from[$i], $to[$i]);
|
||||
++$i;
|
||||
}
|
||||
|
||||
//remove common tokens at the end
|
||||
$j = 1;
|
||||
while($i + $j <= $m && $i + $j <= $n && $from[$m - $j] === $to[$n - $j]) {
|
||||
$removed[$m - $j] = $added[$n - $j] = false;
|
||||
unset($from[$m - $j], $to[$n - $j]);
|
||||
++$j;
|
||||
}
|
||||
|
||||
$this->from = $newFromIndex = $this->to = $newToIndex = array();
|
||||
|
||||
//remove tokens not in both sequences
|
||||
$shared = array();
|
||||
foreach( $from as $key ) {
|
||||
$shared[$key] = false;
|
||||
}
|
||||
|
||||
foreach($to as $index => &$el) {
|
||||
if(array_key_exists($el, $shared)) {
|
||||
//keep it
|
||||
$this->to[] = $el;
|
||||
$shared[$el] = true;
|
||||
$newToIndex[] = $index;
|
||||
}
|
||||
}
|
||||
foreach($from as $index => &$el) {
|
||||
if($shared[$el]) {
|
||||
//keep it
|
||||
$this->from[] = $el;
|
||||
$newFromIndex[] = $index;
|
||||
}
|
||||
}
|
||||
|
||||
unset($shared, $from, $to);
|
||||
|
||||
$this->m = count($this->from);
|
||||
$this->n = count($this->to);
|
||||
|
||||
$this->removed = $this->m > 0 ? array_fill(0, $this->m, true) : array();
|
||||
$this->added = $this->n > 0 ? array_fill(0, $this->n, true) : array();
|
||||
|
||||
if ($this->m == 0 || $this->n == 0) {
|
||||
$this->length = 0;
|
||||
} else {
|
||||
$this->maxDifferences = ceil(($this->m + $this->n) / 2.0);
|
||||
if ($this->m * $this->n > $this->tooLong) {
|
||||
// limit complexity to D^POW_LIMIT for long sequences
|
||||
$this->maxDifferences = floor(pow($this->maxDifferences, $this->powLimit - 1.0));
|
||||
wfDebug("Limiting max number of differences to $this->maxDifferences\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* The common prefixes and suffixes are always part of some LCS, include
|
||||
* them now to reduce our search space
|
||||
*/
|
||||
$max = min($this->m, $this->n);
|
||||
for ($forwardBound = 0; $forwardBound < $max
|
||||
&& $this->from[$forwardBound] === $this->to[$forwardBound];
|
||||
++$forwardBound) {
|
||||
$this->removed[$forwardBound] = $this->added[$forwardBound] = false;
|
||||
}
|
||||
|
||||
$backBoundL1 = $this->m - 1;
|
||||
$backBoundL2 = $this->n - 1;
|
||||
|
||||
while ($backBoundL1 >= $forwardBound && $backBoundL2 >= $forwardBound
|
||||
&& $this->from[$backBoundL1] === $this->to[$backBoundL2]) {
|
||||
$this->removed[$backBoundL1--] = $this->added[$backBoundL2--] = false;
|
||||
}
|
||||
|
||||
$temp = array_fill(0, $this->m + $this->n + 1, 0);
|
||||
$V = array($temp, $temp);
|
||||
$snake = array(0, 0, 0);
|
||||
|
||||
$this->length = $forwardBound + $this->m - $backBoundL1 - 1
|
||||
+ $this->lcs_rec($forwardBound, $backBoundL1,
|
||||
$forwardBound, $backBoundL2, $V, $snake);
|
||||
}
|
||||
|
||||
$this->m = $m;
|
||||
$this->n = $n;
|
||||
|
||||
$this->length += $i + $j - 1;
|
||||
|
||||
foreach($this->removed as $key => &$removed_elem) {
|
||||
if(!$removed_elem) {
|
||||
$removed[$newFromIndex[$key]] = false;
|
||||
}
|
||||
}
|
||||
foreach($this->added as $key => &$added_elem) {
|
||||
if(!$added_elem) {
|
||||
$added[$newToIndex[$key]] = false;
|
||||
}
|
||||
}
|
||||
$this->removed = $removed;
|
||||
$this->added = $added;
|
||||
}
|
||||
|
||||
function diff_range($from_lines, $to_lines) {
|
||||
// Diff and store locally
|
||||
$this->diff($from_lines, $to_lines);
|
||||
unset($from_lines, $to_lines);
|
||||
|
||||
$ranges = array();
|
||||
$xi = $yi = 0;
|
||||
while ($xi < $this->m || $yi < $this->n) {
|
||||
// Matching "snake".
|
||||
while ($xi < $this->m && $yi < $this->n
|
||||
&& !$this->removed[$xi]
|
||||
&& !$this->added[$yi]) {
|
||||
++$xi;
|
||||
++$yi;
|
||||
}
|
||||
// Find deletes & adds.
|
||||
$xstart = $xi;
|
||||
while ($xi < $this->m && $this->removed[$xi]) {
|
||||
++$xi;
|
||||
}
|
||||
|
||||
$ystart = $yi;
|
||||
while ($yi < $this->n && $this->added[$yi]) {
|
||||
++$yi;
|
||||
}
|
||||
|
||||
if ($xi > $xstart || $yi > $ystart) {
|
||||
$ranges[] = new RangeDifference($xstart, $xi,
|
||||
$ystart, $yi);
|
||||
}
|
||||
}
|
||||
return $ranges;
|
||||
}
|
||||
|
||||
private function lcs_rec($bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake) {
|
||||
// check that both sequences are non-empty
|
||||
if ($bottoml1 > $topl1 || $bottoml2 > $topl2) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
$d = $this->find_middle_snake($bottoml1, $topl1, $bottoml2,
|
||||
$topl2, $V, $snake);
|
||||
|
||||
// need to store these so we don't lose them when they're
|
||||
// overwritten by the recursion
|
||||
$len = $snake[2];
|
||||
$startx = $snake[0];
|
||||
$starty = $snake[1];
|
||||
|
||||
// the middle snake is part of the LCS, store it
|
||||
for ($i = 0; $i < $len; ++$i) {
|
||||
$this->removed[$startx + $i] = $this->added[$starty + $i] = false;
|
||||
}
|
||||
|
||||
if ($d > 1) {
|
||||
return $len
|
||||
+ $this->lcs_rec($bottoml1, $startx - 1, $bottoml2,
|
||||
$starty - 1, $V, $snake)
|
||||
+ $this->lcs_rec($startx + $len, $topl1, $starty + $len,
|
||||
$topl2, $V, $snake);
|
||||
} else if ($d == 1) {
|
||||
/*
|
||||
* In this case the sequences differ by exactly 1 line. We have
|
||||
* already saved all the lines after the difference in the for loop
|
||||
* above, now we need to save all the lines before the difference.
|
||||
*/
|
||||
$max = min($startx - $bottoml1, $starty - $bottoml2);
|
||||
for ($i = 0; $i < $max; ++$i) {
|
||||
$this->removed[$bottoml1 + $i] =
|
||||
$this->added[$bottoml2 + $i] = false;
|
||||
}
|
||||
return $max + $len;
|
||||
}
|
||||
return $len;
|
||||
}
|
||||
|
||||
private function find_middle_snake($bottoml1, $topl1, $bottoml2,$topl2, &$V, &$snake) {
|
||||
$from = &$this->from;
|
||||
$to = &$this->to;
|
||||
$V0 = &$V[0];
|
||||
$V1 = &$V[1];
|
||||
$snake0 = &$snake[0];
|
||||
$snake1 = &$snake[1];
|
||||
$snake2 = &$snake[2];
|
||||
$bottoml1_min_1 = $bottoml1-1;
|
||||
$bottoml2_min_1 = $bottoml2-1;
|
||||
$N = $topl1 - $bottoml1_min_1;
|
||||
$M = $topl2 - $bottoml2_min_1;
|
||||
$delta = $N - $M;
|
||||
$maxabsx = $N+$bottoml1;
|
||||
$maxabsy = $M+$bottoml2;
|
||||
$limit = min($this->maxDifferences, ceil(($N + $M ) / 2));
|
||||
|
||||
//value_to_add_forward: a 0 or 1 that we add to the start
|
||||
// offset to make it odd/even
|
||||
if (($M & 1) == 1) {
|
||||
$value_to_add_forward = 1;
|
||||
} else {
|
||||
$value_to_add_forward = 0;
|
||||
}
|
||||
|
||||
if (($N & 1) == 1) {
|
||||
$value_to_add_backward = 1;
|
||||
} else {
|
||||
$value_to_add_backward = 0;
|
||||
}
|
||||
|
||||
$start_forward = -$M;
|
||||
$end_forward = $N;
|
||||
$start_backward = -$N;
|
||||
$end_backward = $M;
|
||||
|
||||
$limit_min_1 = $limit - 1;
|
||||
$limit_plus_1 = $limit + 1;
|
||||
|
||||
$V0[$limit_plus_1] = 0;
|
||||
$V1[$limit_min_1] = $N;
|
||||
$limit = min($this->maxDifferences, ceil(($N + $M ) / 2));
|
||||
|
||||
if (($delta & 1) == 1) {
|
||||
for ($d = 0; $d <= $limit; ++$d) {
|
||||
$start_diag = max($value_to_add_forward + $start_forward, -$d);
|
||||
$end_diag = min($end_forward, $d);
|
||||
$value_to_add_forward = 1 - $value_to_add_forward;
|
||||
|
||||
// compute forward furthest reaching paths
|
||||
for ($k = $start_diag; $k <= $end_diag; $k += 2) {
|
||||
if ($k == -$d || ($k < $d
|
||||
&& $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k])) {
|
||||
$x = $V0[$limit_plus_1 + $k];
|
||||
} else {
|
||||
$x = $V0[$limit_min_1 + $k] + 1;
|
||||
}
|
||||
|
||||
$absx = $snake0 = $x + $bottoml1;
|
||||
$absy = $snake1 = $x - $k + $bottoml2;
|
||||
|
||||
while ($absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy]) {
|
||||
++$absx;
|
||||
++$absy;
|
||||
}
|
||||
$x = $absx-$bottoml1;
|
||||
|
||||
$snake2 = $absx -$snake0;
|
||||
$V0[$limit + $k] = $x;
|
||||
if ($k >= $delta - $d + 1 && $k <= $delta + $d - 1
|
||||
&& $x >= $V1[$limit + $k - $delta]) {
|
||||
return 2 * $d - 1;
|
||||
}
|
||||
|
||||
// check to see if we can cut down the diagonal range
|
||||
if ($x >= $N && $end_forward > $k - 1) {
|
||||
$end_forward = $k - 1;
|
||||
} else if ($absy - $bottoml2 >= $M) {
|
||||
$start_forward = $k + 1;
|
||||
$value_to_add_forward = 0;
|
||||
}
|
||||
}
|
||||
|
||||
$start_diag = max($value_to_add_backward + $start_backward, -$d);
|
||||
$end_diag = min($end_backward, $d);
|
||||
$value_to_add_backward = 1 - $value_to_add_backward;
|
||||
|
||||
// compute backward furthest reaching paths
|
||||
for ($k = $start_diag; $k <= $end_diag; $k += 2) {
|
||||
if ($k == $d
|
||||
|| ($k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k])) {
|
||||
$x = $V1[$limit_min_1 + $k];
|
||||
} else {
|
||||
$x = $V1[$limit_plus_1 + $k] - 1;
|
||||
}
|
||||
|
||||
$y = $x - $k - $delta;
|
||||
|
||||
$snake2 = 0;
|
||||
while ($x > 0 && $y > 0
|
||||
&& $from[$x +$bottoml1_min_1] === $to[$y + $bottoml2_min_1]) {
|
||||
--$x;
|
||||
--$y;
|
||||
++$snake2;
|
||||
}
|
||||
$V1[$limit + $k] = $x;
|
||||
|
||||
// check to see if we can cut down our diagonal range
|
||||
if ($x <= 0) {
|
||||
$start_backward = $k + 1;
|
||||
$value_to_add_backward = 0;
|
||||
} else if ($y <= 0 && $end_backward > $k - 1) {
|
||||
$end_backward = $k - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for ($d = 0; $d <= $limit; ++$d) {
|
||||
$start_diag = max($value_to_add_forward + $start_forward, -$d);
|
||||
$end_diag = min($end_forward, $d);
|
||||
$value_to_add_forward = 1 - $value_to_add_forward;
|
||||
|
||||
// compute forward furthest reaching paths
|
||||
for ($k = $start_diag; $k <= $end_diag; $k += 2) {
|
||||
if ($k == -$d
|
||||
|| ($k < $d && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k])) {
|
||||
$x = $V0[$limit_plus_1 + $k];
|
||||
} else {
|
||||
$x = $V0[$limit_min_1 + $k] + 1;
|
||||
}
|
||||
|
||||
$absx = $snake0 = $x + $bottoml1;
|
||||
$absy = $snake1 = $x - $k + $bottoml2;
|
||||
|
||||
while ($absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy]) {
|
||||
++$absx;
|
||||
++$absy;
|
||||
}
|
||||
$x = $absx-$bottoml1;
|
||||
$snake2 = $absx -$snake0;
|
||||
$V0[$limit + $k] = $x;
|
||||
|
||||
// check to see if we can cut down the diagonal range
|
||||
if ($x >= $N && $end_forward > $k - 1) {
|
||||
$end_forward = $k - 1;
|
||||
} else if ($absy-$bottoml2 >= $M) {
|
||||
$start_forward = $k + 1;
|
||||
$value_to_add_forward = 0;
|
||||
}
|
||||
}
|
||||
|
||||
$start_diag = max($value_to_add_backward + $start_backward, -$d);
|
||||
$end_diag = min($end_backward, $d);
|
||||
$value_to_add_backward = 1 - $value_to_add_backward;
|
||||
|
||||
// compute backward furthest reaching paths
|
||||
for ($k = $start_diag; $k <= $end_diag; $k += 2) {
|
||||
if ($k == $d
|
||||
|| ($k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k])) {
|
||||
$x = $V1[$limit_min_1 + $k];
|
||||
} else {
|
||||
$x = $V1[$limit_plus_1 + $k] - 1;
|
||||
}
|
||||
|
||||
$y = $x - $k - $delta;
|
||||
|
||||
$snake2 = 0;
|
||||
while ($x > 0 && $y > 0
|
||||
&& $from[$x +$bottoml1_min_1] === $to[$y + $bottoml2_min_1]) {
|
||||
--$x;
|
||||
--$y;
|
||||
++$snake2;
|
||||
}
|
||||
$V1[$limit + $k] = $x;
|
||||
|
||||
if ($k >= -$delta - $d && $k <= $d - $delta
|
||||
&& $x <= $V0[$limit + $k + $delta]) {
|
||||
$snake0 = $bottoml1 + $x;
|
||||
$snake1 = $bottoml2 + $y;
|
||||
return 2 * $d;
|
||||
}
|
||||
|
||||
// check to see if we can cut down our diagonal range
|
||||
if ($x <= 0) {
|
||||
$start_backward = $k + 1;
|
||||
$value_to_add_backward = 0;
|
||||
} else if ($y <= 0 && $end_backward > $k - 1) {
|
||||
$end_backward = $k - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
/*
|
||||
* computing the true LCS is too expensive, instead find the diagonal
|
||||
* with the most progress and pretend a midle snake of length 0 occurs
|
||||
* there.
|
||||
*/
|
||||
|
||||
$most_progress = self::findMostProgress($M, $N, $limit, $V);
|
||||
|
||||
$snake0 = $bottoml1 + $most_progress[0];
|
||||
$snake1 = $bottoml2 + $most_progress[1];
|
||||
$snake2 = 0;
|
||||
wfDebug("Computing the LCS is too expensive. Using a heuristic.\n");
|
||||
$this->heuristicUsed = true;
|
||||
return 5; /*
|
||||
* HACK: since we didn't really finish the LCS computation
|
||||
* we don't really know the length of the SES. We don't do
|
||||
* anything with the result anyway, unless it's <=1. We know
|
||||
* for a fact SES > 1 so 5 is as good a number as any to
|
||||
* return here
|
||||
*/
|
||||
}
|
||||
|
||||
private static function findMostProgress($M, $N, $limit, $V) {
|
||||
$delta = $N - $M;
|
||||
|
||||
if (($M & 1) == ($limit & 1)) {
|
||||
$forward_start_diag = max(-$M, -$limit);
|
||||
} else {
|
||||
$forward_start_diag = max(1 - $M, -$limit);
|
||||
}
|
||||
|
||||
$forward_end_diag = min($N, $limit);
|
||||
|
||||
if (($N & 1) == ($limit & 1)) {
|
||||
$backward_start_diag = max(-$N, -$limit);
|
||||
} else {
|
||||
$backward_start_diag = max(1 - $N, -$limit);
|
||||
}
|
||||
|
||||
$backward_end_diag = -min($M, $limit);
|
||||
|
||||
$temp = array(0, 0, 0);
|
||||
|
||||
|
||||
$max_progress = array_fill(0, ceil(max($forward_end_diag - $forward_start_diag,
|
||||
$backward_end_diag - $backward_start_diag) / 2), $temp);
|
||||
$num_progress = 0; // the 1st entry is current, it is initialized
|
||||
// with 0s
|
||||
|
||||
// first search the forward diagonals
|
||||
for ($k = $forward_start_diag; $k <= $forward_end_diag; $k += 2) {
|
||||
$x = $V[0][$limit + $k];
|
||||
$y = $x - $k;
|
||||
if ($x > $N || $y > $M) {
|
||||
continue;
|
||||
}
|
||||
|
||||
$progress = $x + $y;
|
||||
if ($progress > $max_progress[0][2]) {
|
||||
$num_progress = 0;
|
||||
$max_progress[0][0] = $x;
|
||||
$max_progress[0][1] = $y;
|
||||
$max_progress[0][2] = $progress;
|
||||
} else if ($progress == $max_progress[0][2]) {
|
||||
++$num_progress;
|
||||
$max_progress[$num_progress][0] = $x;
|
||||
$max_progress[$num_progress][1] = $y;
|
||||
$max_progress[$num_progress][2] = $progress;
|
||||
}
|
||||
}
|
||||
|
||||
$max_progress_forward = true; // initially the maximum
|
||||
// progress is in the forward
|
||||
// direction
|
||||
|
||||
// now search the backward diagonals
|
||||
for ($k = $backward_start_diag; $k <= $backward_end_diag; $k += 2) {
|
||||
$x = $V[1][$limit + $k];
|
||||
$y = $x - $k - $delta;
|
||||
if ($x < 0 || $y < 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
$progress = $N - $x + $M - $y;
|
||||
if ($progress > $max_progress[0][2]) {
|
||||
$num_progress = 0;
|
||||
$max_progress_forward = false;
|
||||
$max_progress[0][0] = $x;
|
||||
$max_progress[0][1] = $y;
|
||||
$max_progress[0][2] = $progress;
|
||||
} else if ($progress == $max_progress[0][2] && !$max_progress_forward) {
|
||||
++$num_progress;
|
||||
$max_progress[$num_progress][0] = $x;
|
||||
$max_progress[$num_progress][1] = $y;
|
||||
$max_progress[$num_progress][2] = $progress;
|
||||
}
|
||||
}
|
||||
|
||||
// return the middle diagonal with maximal progress.
|
||||
return $max_progress[floor($num_progress / 2)];
|
||||
}
|
||||
|
||||
public function getLcsLength(){
|
||||
if($this->heuristicUsed && !$this->lcsLengthCorrectedForHeuristic){
|
||||
$this->lcsLengthCorrectedForHeuristic = true;
|
||||
$this->length = $this->m-array_sum($this->added);
|
||||
}
|
||||
return $this->length;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Alternative representation of a set of changes, by the index
|
||||
* ranges that are changed.
|
||||
*
|
||||
* @ingroup DifferenceEngine
|
||||
*/
|
||||
class RangeDifference {
|
||||
|
||||
public $leftstart;
|
||||
public $leftend;
|
||||
public $leftlength;
|
||||
|
||||
public $rightstart;
|
||||
public $rightend;
|
||||
public $rightlength;
|
||||
|
||||
function __construct($leftstart, $leftend, $rightstart, $rightend){
|
||||
$this->leftstart = $leftstart;
|
||||
$this->leftend = $leftend;
|
||||
$this->leftlength = $leftend - $leftstart;
|
||||
$this->rightstart = $rightstart;
|
||||
$this->rightend = $rightend;
|
||||
$this->rightlength = $rightend - $rightstart;
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user